3.58 \(\int \frac{1}{(a+a \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=55 \[ \frac{\sin (c+d x)}{3 d \left (a^2 \cos (c+d x)+a^2\right )}+\frac{\sin (c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

[Out]

Sin[c + d*x]/(3*d*(a + a*Cos[c + d*x])^2) + Sin[c + d*x]/(3*d*(a^2 + a^2*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.0269949, antiderivative size = 55, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {2650, 2648} \[ \frac{\sin (c+d x)}{3 d \left (a^2 \cos (c+d x)+a^2\right )}+\frac{\sin (c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(-2),x]

[Out]

Sin[c + d*x]/(3*d*(a + a*Cos[c + d*x])^2) + Sin[c + d*x]/(3*d*(a^2 + a^2*Cos[c + d*x]))

Rule 2650

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^n)/(a*
d*(2*n + 1)), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2648

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> -Simp[Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \frac{1}{(a+a \cos (c+d x))^2} \, dx &=\frac{\sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac{\int \frac{1}{a+a \cos (c+d x)} \, dx}{3 a}\\ &=\frac{\sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac{\sin (c+d x)}{3 d \left (a^2+a^2 \cos (c+d x)\right )}\\ \end{align*}

Mathematica [A]  time = 0.049044, size = 53, normalized size = 0.96 \[ \frac{\left (3 \sin \left (\frac{1}{2} (c+d x)\right )+\sin \left (\frac{3}{2} (c+d x)\right )\right ) \cos \left (\frac{1}{2} (c+d x)\right )}{3 a^2 d (\cos (c+d x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(-2),x]

[Out]

(Cos[(c + d*x)/2]*(3*Sin[(c + d*x)/2] + Sin[(3*(c + d*x))/2]))/(3*a^2*d*(1 + Cos[c + d*x])^2)

________________________________________________________________________________________

Maple [A]  time = 0.033, size = 32, normalized size = 0.6 \begin{align*}{\frac{1}{2\,{a}^{2}d} \left ({\frac{1}{3} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}+\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+cos(d*x+c)*a)^2,x)

[Out]

1/2/d/a^2*(1/3*tan(1/2*d*x+1/2*c)^3+tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [A]  time = 1.11317, size = 62, normalized size = 1.13 \begin{align*} \frac{\frac{3 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac{\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{6 \, a^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

1/6*(3*sin(d*x + c)/(cos(d*x + c) + 1) + sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/(a^2*d)

________________________________________________________________________________________

Fricas [A]  time = 1.62386, size = 123, normalized size = 2.24 \begin{align*} \frac{{\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right )}{3 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

1/3*(cos(d*x + c) + 2)*sin(d*x + c)/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [A]  time = 1.22905, size = 44, normalized size = 0.8 \begin{align*} \begin{cases} \frac{\tan ^{3}{\left (\frac{c}{2} + \frac{d x}{2} \right )}}{6 a^{2} d} + \frac{\tan{\left (\frac{c}{2} + \frac{d x}{2} \right )}}{2 a^{2} d} & \text{for}\: d \neq 0 \\\frac{x}{\left (a \cos{\left (c \right )} + a\right )^{2}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))**2,x)

[Out]

Piecewise((tan(c/2 + d*x/2)**3/(6*a**2*d) + tan(c/2 + d*x/2)/(2*a**2*d), Ne(d, 0)), (x/(a*cos(c) + a)**2, True
))

________________________________________________________________________________________

Giac [A]  time = 1.19099, size = 42, normalized size = 0.76 \begin{align*} \frac{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 3 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{6 \, a^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

1/6*(tan(1/2*d*x + 1/2*c)^3 + 3*tan(1/2*d*x + 1/2*c))/(a^2*d)